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The paper describes steps in the development of a low Reynolds number second-moment 
closure for general f low geometries. This requirement means that the model cannot 
contain geometry-specif ic quantit ies, such as the wal l -normal  vector or wal l  distance• In 
their place, invariant dimensionless "gradient  indicators" are introduced. New models are 
also devised for stress dissipation to capture the very diverse behaviour of the different 
components of sij in the wal l 's  vicinity wi th and wi thout  shear. A novel decomposition of 
the f luctuating pressure terms is also proposed. Applications are shown for shear-free 
boundary regions, plane channel, and stagnation flows. 

Introduction 

In recent years computer technology has evolved to a stage 
where computational fluid dynamics (CFD) can be used to pre- 
dict a wide range of complex engineering flows. To date, how- 
ever, the most commonly used turbulence models have been k-e 
eddy-viscosity schemes. Yet, second-moment closures offer the 
potential for far more reliable predictions, since important gen- 
eration terms are treated exactly. Although these have been 
shown to be superior in a number of complex flows involving 
swirl, rotation, buoyancy, etc., the current high Reynolds number 
versions require modifications before they can be applied to low 
Reynolds number, near-wall regions. Virtually all current propos- 
als for low Reynolds number models resort to using wall-normal 
vectors, which makes them inapplicable to complex flow geome- 
tries. Some earlier studies (Craft et al. 1993a, b) avoided this 
problem by employing a simpler eddy-viscosity scheme in the 
near-wall sublayer; but one of the conclusions to emerge from 
these was that a better modelling of the near-wall region was 
required, particularly for accurate heat transfer predictions. 

The realizable second-moment closure evolved over several 
years at UMIST has been found to predict successfully a range of 
free shear flows (Fu 1988; Craft et al. 1994), and the current 
work aims to extend this model to be applicable to low Reynolds 
number regions. This necessitates accounting for effects due to 
inhomogeneity, strong anisotropy, and the damping of the fluctu- 
ating velocity component normal to the wall. One important 
aspect of the present modelling is that it should be applicable to 
arbitrary geometries: this means that the "wall-normal" distance 
and vectors, often included in models, must not be used, since 
they cannot be uniquely defined for complex surface topogra- 
phies. Some developments in this direction have been reported 
by Launder and Tselipidakis (1993) and Launder and Li (1994), 
who showed that, with suitable inhomogeneity corrections, the 
above closure could be applied to plane channel flow without the 
need for additional wall-reflection terms. However, experience 
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has shown that this strategy, on its own, is inadequate for 
handling impinging flows or other situations where the wall 
region is far from a state of local equilibrium. 

Recent direct numerical simulation (DNS) data have proved 
invaluable in the development of near-wall models, and the 
present contribution makes particular use of some recent simula- 
tions by Perot and Moin (1993) to begin the task of providing a 
more general strategy for modelling near-wall turbulence. These 
workers explored the behaviour of decaying turbulence near 
impermeable boundaries. The studies showed that turbulence 
does feel significant "wall" effects even in the absence of mean 
shear. Their simulations included both a shear-free wall (where 
all velocity components vanish) and an idealized free surface 
(where only the component normal to the surface vanishes). In 
this latter flow, the turbulent Reynolds number takes a maximum 
value at the surface, a feature that helps to distinguish between 
effects of low turbulent Reynolds number and inhomogeneity. 

The remainder of the paper introduces the modelling back- 
grounds, describes the modelling approaches used for certain 
processes, and presents results in sheared, impinging, and shear- 
free flows. 

Modelling approach 

The Reynolds stress transport equations can be written as 

Duiu j 
Dt = P i j + I ] i ) - e i j + d i j  (l) 

where, in the absence of force fields and significant density 
variations, the stress production Pij is simply - ( u i u  k OUj/Ox k + 
uju k OUjOx~) and requires no modelling. The diffusion term d d 
is given by 

dij = ~ c)xk - uiuju k (2) 

0142- 727X/96/815.00 
PII S0142-727X(96)00038-4 



A Reynolds stress closure for complex geometries: T. J. Craft and B. E. Launder 

In the present work, the triple correlation is approximated by the 
Hanjalic-Launder (1972) proposal: 

tion to be applied. These twin objectives are served by adopting 
for modelling the parameter di: 

k r ouju k oui,  k 
uiuju k=  - O . l l ~ [ u i u  t o x  t +u ju  t o x  I 

Oujui ] 
- -  + u k u t - ~ - x t  ] (3) 

The pressure correlation IIij = --(U i Op/Ox.i + U i Op/Oxj)/p is 
often split into a pressure-strain correlation 4,sj and a pressure- 
diffusion term d,~, where 

ou ) 
*i j= o oxj + and d =-o < Oxj + Ox, ] 

(4) 

d i =-Ni/(o~ + (Xkmk)1/2)  (5) 

The quantity ct has been taken as 0.5, while, for a local-equi- 
librium near-wall shear flow, (NkNk) 1/2 takes a value of about 
2.5 in the fully turbulent region. 

An objection to using N/ is that, in the "buffer region" of a 
wall shear flow, the length scale ka /2 /e  levels out giving undesir- 
ably small levels of d~ in what is a highly inhomogeneous region. 
This problem is removed by introducing Lumley's (1978) flatness 
factor A, defined below, so that 

0 N, A 
Ni A =- ~x i ( IA)  and d/A = (6) 

tl -}- ( NkA NkA ) 1/2 

Lumley (1975) has pointed out, however, that there are various 
ways of decomposing Ilij into diffusive and redistributive parts; 
the present work in fact adopts such a nonconventional decom- 
position. 

In the closure developed in later sections, the wall-normal 
vector is not used, since it limits the applicability of the model to 
geometrically simple configurations. It is, nevertheless, desirable 
to have some parameter which identifies the direction in which 
strong inhomogeneity is present. The current proposals, in fact, 
adopt not just one but two inhomogeneity indicators based on 
gradients of the turbulent length scale, l =-k3/2/e. While the 
parameter N~ ---- Ol/Ox i is dimensionless and has been used in a 
number of proposals (e.g., Launder and Tselipidakis 1993), for 
present purposes, it is desirable to normalize N~ so that, in 
regions of strong inhomogeneity, it is the direction of inhomo- 
geneity, rather than the magnitude of the length-scale-gradient 
itself, that is flagged. However, if the inhomogeneity is only 
weak, one does not want any appreciable inhomogeneity correc- 

The parameter A takes the value unity in isotropic turbulence 
and vanishes at a wall or free surface where the turbulence 
fluctuations reduce to a two-component form. The strong rise in 
A across the buffer region ensures substantial levels of N/A and 
thus of d~. 

To illustrate this point, Figure 1 shows d~ and d~ for the 
plane channel flow of Kim et al. (1987) evaluated from the DNS 
data. Evidently the use of d~ has removed the problematical 
minimum that occurs with d~ at y / h  = 0.15 (the channel width 
being 2h). 

The turbulent Reynolds number R t is also used to provide 
some near-wall damping, but its influence is restricted to regions 
where R t is less than about 200, since it is generally held that 
viscous effects should become negligible at higher R t. The stress 
invariants A 2 --- aijaij;  A 3 =- ai jajkaki  and the flatness parameter 
A, introduced above, (defined as: A --- 1 - 9 /8(A 2 - A  3) where 
aij =- u iu j / k  - 2/3~i]) are also used, since they enable the model 
to be sensitized to the anisotropy of the Reynolds stress. 

Notation 

A 

A2,A3 
ai) 
d i, d :  
dij 

k 
Lo 
m , m /  
P~j 
P 
Qq 
Rt 
T 
To 
t 
ui 
lliUj 
llI, UI,W t 
xj 

Lumley's "stress flatness" invariant 
second and third invariants of stress anisotropy Greek 
dimensionless stress anisotropy, u iu j / k  - 2~ii/3 
indicators of length-scale gradient direction ~ij 
diffusive transport of uiuj e 

diffusive transport of uiu j due to pressure 
fluctuations e q 
turbulent kinetic energy e'ij, e'~j, e*j 
reference length ll~j 
length-scale gradient vectors 
stress production t e n s o r  qbij 
pressure fluctuation p 
Perot-Moin t e n s o r :  a p k Q k q  =- UpUq T w 
turbulent Reynolds number, k 2 / v e  ~bi*j 
m e a n  temperature t4~ijl,* (I)i*j2 
reference time 
time 
velocity fluctuation 
kinematic Reynolds stress + 

r 
Cartesian components of rms fluctuating velocity 
Cartesian coordinate (normally: x 1 stream direc- 
tion, x 2 direction of inhomogeneity) 

coordinate, orthogonal to mean flow in direction 
of inhomogeneity 

Kronecker delta 
kinematic dissipation rate of k 
homogeneous dissipation rate of k 
dissipation rate of uiu j 
different contributors to eq (see Equation 9) 
pressure-gradient-velocity tensor , -  ~ j  + 

uj Op/Oxi)/p 
conventional pressure-strain tensor 
fluid density 
wall shear stress 
modified pressure-strain tensor 
turbulence and mean-strain contributions t o  (1)ij 

Superscripts 

quantity nondimensionalized with %, p, and v 
denotes rms value of indicated velocity 
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Dissipation tensor 8q 

In most high Reynolds number models, the smallest scale dissi- 
pative eddies are assumed to be isotropic, so that ~'ij is modelled 
as 2/3e~ i .  At lower Reynolds numbers it is often supposed that 
eij = euiuj /k  is a better approximation though, at a solid wall, 
Launder and Reynolds (1983) showed that the limiting behaviour 
of eij is given by 

g l l  833 1 822 1 El2  8 
- ( 7 )  

u 2 u~ 4 uz2 2 u ~  k 

However, this limit is not valid at a free surface, since then 
u ~ y  2 and e22 is nonzero at the surface where it balances the 
molecular diffusion. 

Perot and Moin (1993), by postprocessing their DNS data, 
proposed a model for eij which had the very simple near-wall 
form 

3Qik 3Qjk 
e d = 2 v - -  (8) 

OX I 3X l 

where the tensor Qij was defined by QikQkj=UiUj. Unfortu- 
nately, this was found to be unsuitable for use in computations. 
At the wall, the u~ budget consists of a balance between viscous 
diffusion and dissipation--the form of Equation 8 is such that this 
balance is achieved for u 2 ~y" ,  for any value of n; consequently, 
the near-wall behaviour simply becomes a function of the initial 
conditions. 

The present work employs the following composite form 
specifically to address the behaviour of eij near walls and free 
surfaces indicated by the DNS results: 

8kk  p n 
ely= 1 - f h - ~ e  (1 - f f l ( e i ] + e u ) / O +  ~-L8B u +f,,,e. T. (9) 

In Equation 9 the various components take the following forms: 

.iuj . l . °  o~ ~i£ u,u, av~ ~(# 
' - -  - -  - -  B i j  q-  2v - -  - -  

8 i j  = 8 k d- 2v k Ox t Ox n k 3xj Ox t 

+ 2vuluj O~ ayCk 
k Ox i 3x t 

r ~ttUk utu---~i a , 
'! . . . . .  - - utuj d']d~ fR e,, e[2 k d ' d k S u - T  dtdj k 1 

e~. = 0.2v( o ' ~  O ~ S q + i a ~ O ~  ) 
OX k c~X k OX  i 3 X j  

and where 

D =  (e~k + 8~k)/(2e)  

fn = (1 - A ) m i n ( ( R J 8 0 )  2, 1.0) f .  = Z  1/2 

fh = 1 - e x p ( - R t / 5 0 )  

If we first disregard effects of inhomogeneity, Equation 9 causes 
the component dissipation to vary between 2/3eSq and e ~ iuJ k  
depending on the magnitude of f~, the argument of the latter 
function being a function of A rather than the more usual R t. 
The need for this change of argument is brought out emphati- 
cally by considering the low Reynolds number simulations of 
channel flow: then R t reaches its maximum value near the edge 
of the buffer layer whereas the anisotropy of the dissipation, like 
that of ui--~, decreases all the way to the centre. The term e'q is 
only effective across the viscous sublayer where k-gradients are 
steep; there it acts to satisfy the limits of Equation 7. The 
proposed term el' j principally has the effect of producing the dip 
in 812 seen at around y / 8  = 0.1 in near-wall DNS studies. This 
feature has been ignored in earlier near-wall models. The term 
e*j is designed to improve the behaviour of eq at a free surface, 
where there are significant inhomogeneity effects and the turbu- 
lent Reynolds number is high. 

Predictions of the dissipation component resulting from this 
modelling for the cases of a free-surface flow, a shear-free wall, 
and plane Couette flow are shown in Figure 2. The closure 
predictions draw on values of uiuj and e from the DNS results. 
The very diverse variations exhibited by the different compo- 
nents across the three flows are captured encouragingly well. 

Pressure correlation modelling 

In homogeneous flows, the pressure diffusion term is zero, and 
consequently it is only the pressure-strain term which con- 
tributes to the pressure correlation. In near-wall flows, both 
terms are present, and one question to be addressed is the best 
way of decomposing the lqq term. The conventional decomposi- 
tion is into the pressure-strain and diffusional parts indicated by 
Equation 4. However, Figure 3 shows the distribution of ~bij and 
the quantity +*j = IIij - d~ku.---~./(2k) in the three flows consid- 
ered. Notice that ¢bij itself shows significant differences between 
shear-free flows near a wall and a free surface. In contrast, the 
quantity ¢b*j shows the same qualitative behaviour, suggesting 
that it will be easier to model. 

The model currently proposed for +i~ can be written: 

+ .g.inh 4- ,K inh 
~}~j = ~}~jl -}- {hi J 2  "~i j l  - -  ~" i j2  (10) 

where 

qb*jl = - -C le [ a i j+c ' l ( a i kak j - -1AzS iy ) ] - -~zAa i j  

( 1  } 
(~)i*j2 = - 0 . 6  Pij - "~SijPkk + 0.3aqPkk 

- 0 . 2  ~ ox--T+ ox---~ 

u,uk[ au, au, l l  
[ U i U  k - -  
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Figure 2 Components of the dissipation tensor in (a) free-surface f low of Perot and Moin (1 993); (b) shear-free wall f low of 
Perot and Moin (1993); and (c) plane Couette f low of Kuroda et al. (1993) 
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c ~  1 5  4 ) (  P i j  

+O.X[aij--l(aikakj--18i/A2)]Pkk--O.O5aijatkPk, 

r[ uium UjUm +O.l[ ~--~--Pmj + ----~Pmi) - 2~'ij-~--Pm']~ ] 
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Table 1 Coefficients used in ~ equation 

C~1 C~2 Ad Crs2 C~3 C~4 C~5 Ce 

1 9 2  
1.0 max(0.2, A) 1.0 1.55 1.0 1.0 0.09 

1 + 0 . 7 A d ~ 2  
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The quantities ~bi* 1 and d~i*y z are based on the high Reynolds 
,Kinh number realizable model developed at UMIST. The term ,eiyl 

can be interpreted as an inhomogeneity correction to +*j~, since 
it involves the length-scale-gradient term di, and this has been 
tuned with reference to the shear-free boundary regions. The 
+ii~h correction to the mean-strain-dependent part has a signifi- 
cant effect only in an impinging flow. Further improvements 
might be brought about by applying an inhomogeneity correction 
to the velocity gradient along the lines proposed by Launder and 
Tselipidakis (1993) (see also Launder and Li 1994). 

In high-Reynolds-number flows with weak inhomogeneities, 
the model reverts to the form used previously by the UMIST 
group to predict a number of free shear flows. 

The pressure diffusion term d~k = -(O-~-~jOx k) /p  also needs 
modelling, and the present computations have adopted the fol- 
lowing interim form 

pug/p  = - ( 0 . 5 d  k + 1.1d~)(vekAA2 )1/2 

X [ Cpd 1 A  2 q- Cpd2 R;- I /4exp( _ R , / 4 0 ) ]  (11) 

Cpa t = 1.0 + 2.0 exp( - R J 4 0 )  Cpd 2 = 0.4 

which was found to vanish correctly at the wall and to give a 
reasonable fit to the DNS data. 

Diss ipat ion  rate equa t ion  

The dissipation rate ~ is obtained from the transport equation 

D~ ePkk ~2 (e -- ~)~ 
Dt c~1 2 k  -ce2-"k -tIe2 k 

+ 3x~ l v~lk + C¢U/Uk-- l - -  
e ] Ox k 

k 32Uk 32U~ IAiu j Ok aG OeUl 
q- Cs3VUiU j - -  _ _  .+ Ce4V - -  

e 3X i 3X l 3X d 3X! 8 Ox i 3x k 3Xkk Oxj 

+ c~sA]/e(1 -A)---~-uiu ) -  - -  
~/k fgx i ~Xj 

(12) 

The terms with coefficients G1, G2, and c.e3 are standard in 
appearance (Hanjali6 and Launder 1972), though the magnitude 
of the coefficient G3 is somewhat smaller than in earlier propos- 
als. This reduction in magnitude can be attributed to the inclu- 
sion of the term with coefficient G4 which is a generalisation of 
the proposals of Rodi and Mansour (1993), whilst the final term 
provides an additional source that is needed at a shear-free 
boundary. The sink term ( e -  k )~ / k  acts to give the correct 
behaviour of ~ very close to the wall. The coefficients take the 
values given in Table 1. 
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Results 

Most of the flows have been computed using suitably modified 
versions of the parabolic code PASSABLE (Leschziner 1982). 
The shear-free boundary regions are not steady-state flows and 
were computed by imposing initial conditions corresponding to 
decaying grid turbulence and then marching the solution through 
time with the appropriate wall or surface boundary conditions 
applied. This practice corresponds to the manner in which the 
DNS data were obtained and allows comparisons to be made at 
specific times after boundary insertion. 

Figure 4 shows the Reynolds normal-stress components per- 
pendicular and parallel to the shear-free wall at three different 
times after boundary insertion. Corresponding results for the 
free-surface case are shown in Figure 5. Although the initial 
effect of the boundary insertion is not particularly well captured, 
at later times the agreement between computations and DNS 
improves. While the shear-free wall is well predicted, the free- 
surface flow shows that improvements are needed close to the 
surface in order to capture the peak of u'l.__ Figure 6 shows 
elements of the computed budgets of u 2 and u 2 in the shear-free 
wall case, which are in reasonable agreement with the data. 

Figure 7 shows the mean velocity profile for a plane channel 
flow at a bulk Reynolds number of 5000, while the corresponding 
shear and normal stresses are shown in Figure 8. The DNS data 

are from Kim et al. (1987)• Although the u 2 profile is well cap- 

tured, the peak in u~ is somewhat underpredicted, suggesting 
that the inhomogeneity correction terms still require some fur- 
ther improvement. 

The impinging jet flow provides a very stringent test of any 
turbulence model, and is a case which many models developed by 
reference to simple shear flows fail to predict (Craft et al. 1993)• 
The present model has thus been used to compute an axisymmet- 
ric jet impinging onto a flat, heated plate from a height of two jet 
diameters and at a Reynolds number based on jet diameter and 
bulk velocity of 23,000. Detailed dynamic field measurement for 
this case have been reported by Cooper et al. (1993), and surface 
heat transfer measurements have been made by Baughn and 
Shimizu (1989). 

Computations were performed by incorporating the present 
closure into the elliptic TEAM code, described by Huang and 
Leschziner (1983). Figure 9 shows mean velocity and shear stress 
profiles at various radial distances from the stagnation point. 
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Figure 1 1 Radial variation of Nusselt number in axisym- 
metric stagnation flow 

While the computed shear stress levels are somewhat too large, 
this measure of agreement  is much bet ter  than any earlier 
second-moment  computations that did not explicitly employ 
wall-distance and normal vectors. The mean velocity-profile com- 
parisons confirm this encouraging trend: the velocity peak does 
decay too rapidly, but the error is fairly modest. Normal stress 
components  parallel and perpendicular to the wall are shown in 
Figure 10, and are again seen to be in reasonable agreement  with 
the data, although too large levels of u2 z are predicted along the 
stagnation line. 

Finally, Figure 11 shows heat  transfer predictions, obtained 
using the G G D H  heat  flux model (Daly 1974): 

k OT 
uiO = --ceuiu/ e Oxj (13) 

with a coefficient c~ = 0.3. There  is clearly a problem at the 
stagnation point, which would appear  to be associated with an 
overprediction of the turbulent length-scale in this region. At  
larger radial distances, however, predictions are in bet ter  agree- 
ment  with the measurements,  and the shape and position of the 
secondary peak at around R / D =  1.5 are well-captured. 

C o n c l u s i o n s  

The paper  has presented the initial development of a new 
second-moment closure designed to be applicable over a range of 
near-wall (and near free-surface) flows without introducing such 
configuration-specific parameters  as wall distance or wall-normal 
direction (quantities that  limit the applicability of any model to 
simple configurations). The approach has been to extend the 

realizable free-shear-flow form (that has been in use at UMIST 
for several years) by introducing markers of the direction of 
length-scale gradient. These have been used in devising inhomo- 
geneity corrections to the models of pressure-strain and dissipa- 
tion processes. 

While, for flows parallel to walls, the scheme is not yet as 
successful as the closure of Launder and Li (1994), the new 
proposals do enable a wider range of near-wall and free-surface 
flow phenomena  to be captured, including the important  cases of 
impinging and shear-free flows. The next steps should be to apply 
the closure in flows involving successively more complex surface 
topographies. 
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